--- title: "Overview" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{overview} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 6, fig.align = "center" ) ``` Use ezplot to quickly create presentation-ready charts that are also useful for exploratory data analysis. By default, ezplot functions aggregate multiple values of y for repeated categories of x, group, facet_y and facet_x. ```{r setup} library(ezplot) suppressPackageStartupMessages(library(tsibble)) library(tsibbledata) suppressPackageStartupMessages(library(lubridate)) library(ggplot2) library(grid) ``` ### line_plot Weekly aggregation: ```{r} line_plot(ansett, x = "Week", y = "Passengers") ``` Add grouping: ```{r} line_plot(ansett, x = "Week", y = "Passengers", group = "Class") ``` Add faceting: ```{r, fig.width = 7, fig.height = 6} line_plot(ansett, x = "Week", y = "Passengers", group = "Class", facet_x = "Airports", facet_scales = "free_y", size = 10) + theme(axis.text.x = element_text(angle = 90, vjust = 0.38, hjust = 1)) ``` Plot YOY comparisons: ```{r, fig.height = 5} line_plot(gafa_stock, "Date", c("Closing Stock Price" = "Close"), facet_y = "Symbol", facet_scales = "free_y", yoy = TRUE, labels = function(x) ez_labels(x, prepend = "$")) ``` Plot multiple numeric columns: ```{r, fig.width = 7, fig.height = 5} line_plot(hh_budget, "Year", c("DI", "Expenditure", "Savings"), facet_x = "Country") + theme(panel.spacing.x = unit(1, "lines")) + ylab(NULL) ``` ### area_plot Weekly aggregation: ```{r} area_plot(ansett, x = "as.Date(Week)", y = "Passengers") ``` Add grouping: ```{r} area_plot(ansett, x = "as.Date(Week)", y = c("Weekly Passengers" = "Passengers"), "Class") ``` Add faceting: ```{r, fig.width = 7, fig.height = 4} area_plot(ansett, "year(Week) + (month(Week) - 1) / 12", y = c("Monthly Passengers" = "Passengers"), group = "substr(Airports, 5, 7)", facet_x = "substr(Airports, 1, 3)", facet_y = "Class", facet_scales = "free_y") + theme(axis.text.x = element_text(angle = 90, vjust = 0.38, hjust = 1)) ``` ### bar_plot Yearly aggregation ```{r} bar_plot(subset(aus_retail, year(Month) >= 2010), x = "year(Month)", y = "Turnover") ``` With grouping: ```{r, fig.width = 7, fig.height = 4} bar_plot(subset(aus_retail, year(Month) >= 2010), x = "year(Month)", y = "Turnover", group = "State", size = 10) ```